
Structure of GeantV Physics :
a Proposal

GeantV meeting, FNAL, 6 October 2015

 M. Novak, A. Ribon

 CERN PH/SFT

2

Goal
● Create the basic infrastructure to fit the whole physics

of GeantV
● Decay
● Electromagnetic physics
● Hadronic physics
● FastSim
● Biasing
● etc.

3

“Minimalist” Strategy
● Keep a small coupling between kernel and physics

● ideally as it is right now
● keep transportation in the kernel, outside the physics

● Re-use as much as possible the design of Geant4 physics
● to avoid to reinvent the wheel
● to benefit from more than 20 years of successful development in G4
● but trying to streamlining it by reducing the inheritance depth
● boosting its CPU performance by replacing, whenever possible,

virtual function polymorphism with static template polymorphism
● and offering thin interfaces for direct calls to cross sections and

final-state models

● Focus on scalar case (i.e. single-track) but keep in mind also
the extension to track vectorization

4

Applications
● Physics list with only one single process

● e.g. Compton

● Physics list with more processes for only one single particle
● e.g. gamma

● Physics list for electrons
● Multiple scattering
● Continuous-discrete processes: ionization and bremsstrahlung

● Physics list with tabulated physics, i.e. equivalent to the
current one, but within the new infrastructure
● Modular, i.e. can easily replace one process, or all processes

associated to one particle type (e.g. gamma), with detailed one(s)

● Physics list for fast simulation

● ...

5

Main Ideas
● As in G4, any physics process can have 3 “components” :

● Along-the-step, i.e. continuous part of the in-flight process

● Post-step, i.e. discrete part of the in-flight process

● At-rest, i.e. interaction when the particle stops
– But we plan to call it directly from along-the-step and post-step, to save one useless step...

● As in G4, as a general rule, discrete and at-rest processes compete,
whereas continuous processes collaborate

● As in G4, each continuous process can propose a step limitation;
but for discrete processes, the proposed length takes into account the
cross sections of all discrete processes of the particle (as in GV TabPhys)

● Equivalent to G4, and with the same number of random calls

● More adapted for simplicity, locality and hopefully track vectorization

● Individual cross sections of the discrete processes are then used to sample
the target and the process

● Similar approach also for the lifetime of at-rest processes

6

Kernel – Physics Interface
● Two main kernel classes

● GeantPropagator and WorkloadManager

● One physics interface class
● PhysicsProcess : to be renamed as GeantPhysicsInterface

● Start : initialization
● GeantPropagator::PropagatorGeom

calls PhysicsProcess::Initialize

● Event processing
● WorkloadManager::TransportTracks

calls GeantPropagator::ProposeStep
 calls PhysicsProcess::ComputeIntLen
calls PhysicsProcess::Eloss

calls PhysicsProcess::PostStepTypeOfIntrActSampling

calls PhysicsProcess::PostStepFinalStateSampling

7

New Classes

KERNEL

PhysicsList

GeantPhysics
Interface

(PhysicsProcess)

PhysicsProcessHandler

PhysicsManagerPerParticle

SinglePhysicsProcess

Called at initialization

“Inherits”

Uses

Keeps all processes
of one particle

Process1 ProcessN

“Inherits”

8

PhysicsProcessHandler
● Similarly to the Geant4 G4SteppingManager concept, this

class decides and calls the appropriate methods to simulate
the physics of any given particle happening in one step

● This class “derives” from the class GeantPhysicsInterface
and implements the following methods by calling
appropriately the PhysicsManagerPerParticle object of the
particle-type being propagated, and its associated
SinglePhysicsProcess objects:
● Initialize(...) gets production thresholds cuts, the material-cut couple table

 and tracking cuts; then calls PhysicsList::Initialize

● ComputeIntLen(...) proposed length from the physics: the minimum between
 the single value proposed by all the discrete processes
combined (draw from an exponential whose lambda is given by
PhysicsManagerPerParticle::GetTotalLambdaTable) and the ones proposed by
each continuous process SinglePhysicsProcess::AlongStepLimitationLength

9

PhysicsProcessHandler (cont.)
● Eloss(...) : to be renamed AlongStepAction , calls all the

 SinglePhysicsProcess::AlongStepDoIt methods

● PostStepAction(...) :
– Selects the winner discrete process by comparing their respective

SinglePhysicsProcess::InverseLambda values

– Creates eventually vectors of light tracks (i.e. LightTrack_v objects)

– Samples the target (Z, A) by calling SinglePhysicsProcess::SampleTarget

– Calls the winner discrete process (and all “Forced” discrete processes)
SinglePhysicsProcess::PostStepDoIt

● AtRestAction(...) :
– Selects the winner at-rest process by comparing their

SinglePhysicsProcess::AverageLifetime values

– Calls the winner at rest-process (and all “Forced” at-rest processes)
SinglePhysicsProcess::AtRestDoIt (which if needed - e.g. nuclear capture,
but not for decays - samples the target (Z, A))

● ApplyMsc(...) : should be removed: it is not and will not be used

10

PhysicsManagerPerParticle
● Similarly to the Geant4 G4ProcessManager concept, this

class keeps the list of (single) physics processes associated
to one type of particle. Main methods:
● AddProcess(...) (used at initialization)

● BuildTotalLambdaTables(...) (used at initialization)

● GetParticleType(...)
● GetTotalLambdaTable(...)
● GetListAlongStepProcesses(...)
● GetListPostStepCandidateProcesses(...)
● GetListPostStepForcedProcesses(...)
● GetListAtRestCandidateProcesses(...)
● GetListAtRestForcedProcesses(...)

11

SinglePhysicsProcess
● If we adopt the name GeantPhysicsInterface we can

rename this class as PhysicsProcess

● Similarly to the Geant4 G4VProcess concept, this
“base class” specifies one single physics process for
one particle type

● Main methods
● bool isDiscrete, isContinuous, isAtRest;

● enum ForcedCondition { InActivated, NotForced, ForcedAndCandidate,
 ForcedNotCandidate, ExclusivelyForced };

● BuildPhysicsTables(...) : called at initialization to build the physics tables

● IsApplicable(LightTrack(_v))

● GetAtomicCrossSection(...) : method useful only for direct call from users,
 not used in the event simulation

12

SinglePhysicsProcess (cont.)
● InverseLambda(LightTrack(_v)) : the “macroscopic cross section”

 (i.e. number of atoms per unit of volume
multiplied by the atomic cross section) of the discrete part of the physics process
(this method is used only for the sampling of the type of interaction)

● AlongStepLimitationLength(LightTrack(_v)) : returns the step-length limitation of
 the continuous part of the process

● AverageLifetime(LightTrack(_v)) : returns the mean lifetime of the at-rest part of
 the physics process

● void SampleTarget(LightTrack(_v)) : samples the target (Z, A) for the
 discrete interaction

● LightTrack_v AlongStepDoIt(LightTrack_(v)) : does the continuous part of the
 physics process

● LightTrack_v PostStepDoIt(LightTrack_(v)) : does the discrete part of the
 physics process

● LightTrack_v AtRestDoIt(LightTrack_(v)) : does the at-rest part of the
 physics process (including sampling
 of the target (Z, A) if needed)

13

PhysicsList
● Similarly to Geant4, this “base class” specifies all the

single physics processes associated to each particle

● We assume that all the GeantV particles are always present
in the simulation, but by default they have no physics
processes associated to them (i.e. they will be transported
without interactions, like geantinos)

● Main methods:

● Initialize(...) : construct all single physics processes and creates
 all needed physics tables

GeantPropagator::PropagatorGeom
calls GeantPhysicsInterface::Initialize
 calls PhysicsList::Initialize
 calls PhysicsManagerPerParticle::PhysicsManagerPerParticle
 PhysicsProcess::PhysicsProcess
 PhysicsProcess::PhysicsTables
 PhysicsManagerPerParticle::AddProcess
 PhysicsManagerPerParticle::BuildTotalLambdaTables

14

LightTrack (& LightTrack_v)
● Light version of GeantTrack : minimum needed by the physics

● int : particle type (better particle-internal code than pdg)

● int : index in the GeantTrack vector (secondaries will get the index of the parent)

● int : material-cut couple index

● int : track status (e.g. alive, killed, etc.)

● int : index of the selected process (in the list of active discrete or at-rest processes
 kept by the PhysicsManagerPerParticle; negative if winner is continuous)

● int : atomic number (Z) of the selected target

● int : number of nucleons (A = Z + N) of the selected target

● double : u_x (x-component of the unit direction)

● double : u_y (y-component of the unit direction)

● double : u_z (z-component of the unit direction)

● double : kinetic energy (internal unit: GeV)

● double : dynamic mass (internal unit: GeV)

● double : weight (for biasing)

● To be placed in VecGeom/VecCore/
● To allow the physics model library to depend only on this core library (not on GeantV lib)

15

Physical Units
● For performance reasons (i.e. avoid unnecessary

multiplications), better to stick to one set of internal units
in the implementation of physics models

● Different units might be eventually offered to user
applications, but not to the physics part of GeantV

● Any reasonable choice would be acceptable.
We propose:
 (GeV , cm , sec , g/cm^3 , T , K , …)
Motivations:
● The same as Pythia(8), Herwig(++), Fluka, Geant3
● The fact that they are different from Geant4 (MeV, mm, nsec)

forces us not to cut-and-paste code from Geant4

16

Directory Structure
● physics/ (at the top level)

 data/ (independent)
 models/ (depends on VecCore library (and data/))
 decay/
 electromagnetic/
 hadronic/cross_sections/
 final_states/
 fastSim/

 management/ (depends on models & GeantV libraries
 to start with, one single management library)
 processes/
 electromagnetic/
 decay/
 hadronic/
 fastSim/
 physicsList/ (depends on processes/)

17

To-Do
● Need a singleton table with all the material-cut couples

● Need an internal particle code
● from 0 to Nmax , to use as a vector index (useful in various situations...)

● Most needed physics tables are the lambda tables
● Think about a general physics table in GeantV (look to the ones in G4)

– Min, max, number of equally-spaced bins, either log or lin

– Linear or higher-order interpolation

● Add more specifications about the new physics classes and start
implementing them (iterative process...)

● Changes to PhysicsProcess
● Rename the class and some of its methods

● Remove the method ApplyMsc

● Use static template polymorphism if possible

18

More information and updates in:

/afs/cern.ch/user/r/ribon/public/physics_design_draft_0.txt
 physics_design_draft_1.txt
 physics_design_draft_2.txt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

